The generator matrix

 1  0  1  1  1  1  1 X+3  1  1 2X  1  1  1  1 X+3  1  1  1  0  1  1  1 2X  1  1  1  6  1  1  1 X+3  1  1  1 2X+6  1  1  1 X+6  1 X+6  1  1  1  1  1 X+3  1  1  1  1  1  1  0 2X  1  1  1  1  1  1  1  1  1  1  1  1  0 2X  6 2X+6  1  1  1  6  1  1  1 X+6  1  1  1 2X+6  1  1  1  6  1  1  1 X+6  1
 0  1 2X+4  8 X+3 X+1 X+2  1 2X 2X+8  1  4  0 X+2 2X+4  1 X+3 X+1  8  1 2X  4 2X+8  1 X+6 X+7 2X+5  1  7 2X+6  8  1 X+5  0 2X+4  1  5  6 2X+7  1  8  1  5  0 2X+4  6 2X+7  1 X+3 2X X+1  4 X+2 2X+8  1  1 X+3 2X X+1  4 X+6 2X+6 X+7  7 X+2 2X+8 X+5 2X+5  1  1  1  1  6 2X+7  5  1 X+8 X+6 X+7  1 2X+6  7 2X+5  1 2X+1 X+6 X+5  1  3 X+4  2  1  0
 0  0  3  0  3  6  6  0  0  0  6  3  3  6  6  6  3  6  6  0  0  3  0  6  3  6  0  0  3  0  6  6  6  0  6  6  0  0  6  0  0  6  6  3  3  3  3  0  0  3  3  6  0  6  6  0  0  3  3  6  0  3  3  6  0  6  0  6  6  0  6  0  6  0  3  3  3  6  0  3  6  0  3  3  0  6  3  3  6  0  3  3  0
 0  0  0  6  6  3  6  6  6  3  0  3  0  3  0  6  3  6  0  3  3  6  0  3  0  0  6  6  0  0  3  3  0  3  6  6  0  6  3  3  3  0  6  6  6  3  3  0  3  0  0  0  3  3  0  6  6  6  6  3  0  3  3  6  6  6  0  0  3  0  6  3  6  0  6  3  0  3  3  0  3  0  0  3  3  6  6  0  0  6  3  3  0

generates a code of length 93 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 180.

Homogenous weight enumerator: w(x)=1x^0+108x^180+360x^181+1296x^182+214x^183+720x^184+1296x^185+178x^186+216x^187+126x^188+56x^189+504x^190+1044x^191+138x^192+144x^193+126x^194+20x^195+4x^198+2x^207+6x^210+2x^219

The gray image is a code over GF(3) with n=837, k=8 and d=540.
This code was found by Heurico 1.16 in 0.533 seconds.